We need to select 5 persons with at least 3 men. We can do this in the following ways:
\( ^7C_3 \) = \( \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35 \)
\( ^6C_2 \) = \( \frac{6 \times 5}{2 \times 1} = 15 \)
\( ^7C_4 \) = \( \frac{7 \times 6 \times 5 \times 4}{4 \times 3 \times 2 \times 1} = 35 \)
\( ^6C_1 \) = 6
\( ^7C_5 \) = \( \frac{7 \times 6}{2 \times 1} = 21 \)
Thus, the total number of ways is:
\( 525 + 210 + 21 = 756 \)
Thus, the total number of ways to form the committee is 756.