Question:

Four NOR gates are connected as shown in figure. The truth table for the given figure is : 

Show Hint

When analyzing complex logic circuits, it's often easier to use Boolean algebra to simplify the expression rather than testing each input combination through every gate. Remembering De Morgan's theorems (\(\overline{A+B} = \bar{A}\cdot\bar{B}\) and \(\overline{A\cdot B} = \bar{A}+\bar{B}\)) is crucial for simplification. Recognizing standard gate combinations (like this XNOR gate) saves time.
Updated On: Feb 2, 2026
  • A
  • B
  • C
  • D
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Understanding the Question: 
We are given a logic circuit made of four NOR gates and two inputs, A and B. We need to find the truth table for the final output Y. 
Step 2: Key Formula or Approach: 
We will trace the logic signals through the circuit for each possible input combination (00, 01, 10, 11). The Boolean expression for a NOR gate with inputs X and Z is \( \overline{X+Z} \). 
Step 3: Detailed Explanation: 
Let's label the intermediate outputs. 
- The output of the top-left NOR gate (inputs A, B) be \( Y_1 \). \[ Y_1 = \overline{A+B} \] - The output of the middle NOR gate (inputs A, \(Y_1\)) be \( Y_2 \). \[ Y_2 = \overline{A+Y_1} = \overline{A + \overline{A+B}} \] - The output of the bottom NOR gate (inputs B, \(Y_1\)) be \( Y_3 \). \[ Y_3 = \overline{B+Y_1} = \overline{B + \overline{A+B}} \] - The output of the final NOR gate (inputs \(Y_2\), \(Y_3\)) is Y. \[ Y = \overline{Y_2+Y_3} = \overline{(\overline{A + \overline{A+B}}) + (\overline{B + \overline{A+B}})} \] Let's simplify this using Boolean algebra: 
First, simplify \( Y_2 \) and \( Y_3 \). Using De Morgan's theorem (\(\overline{X+Z} = \bar{X}\cdot\bar{Z}\)): 
\[ Y_2 = \overline{A + \overline{A+B}} = \bar{A} \cdot \overline{(\overline{A+B})} = \bar{A} \cdot (A+B) = \bar{A}A + \bar{A}B = 0 + \bar{A}B = \bar{A}B \] \[ Y_3 = \overline{B + \overline{A+B}} = \bar{B} \cdot \overline{(\overline{A+B})} = \bar{B} \cdot (A+B) = A\bar{B} + \bar{B}B = A\bar{B} + 0 = A\bar{B} \] Now, substitute these into the expression for Y: 
\[ Y = \overline{Y_2 + Y_3} = \overline{\bar{A}B + A\bar{B}} \] The expression \( \bar{A}B + A\bar{B} \) is the definition of the XOR operation (\(A \oplus B\)). 
Therefore, \( Y = \overline{A \oplus B} \), which is the XNOR operation. 
Let's construct the truth table for Y = XNOR(A, B): 
- If A=0, B=0: \( Y = \overline{0 \oplus 0} = \overline{0} = 1 \) 
- If A=0, B=1: \( Y = \overline{0 \oplus 1} = \overline{1} = 0 \) 
- If A=1, B=0: \( Y = \overline{1 \oplus 0} = \overline{1} = 0 \) 
- If A=1, B=1: \( Y = \overline{1 \oplus 1} = \overline{0} = 1 \) 
Step 4: Final Answer: 
The resulting truth table is: 
This matches the truth table in option (A). 
 

Was this answer helpful?
0
0

Top Questions on Semiconductor electronics: materials, devices and simple circuits

View More Questions