Let the vertices of the square be A(0,0), B(a,0), C(a,a), D(0,a).
The coordinates of the center of mass when all four particles are present is:
$$x_{cm} = \frac{m(0) + m(a) + m(a) + m(0)}{4m} = \frac{2ma}{4m} = \frac{a}{2}$$
$$y_{cm} = \frac{m(0) + m(0) + m(a) + m(a)}{4m} = \frac{2ma}{4m} = \frac{a}{2}$$
The center of mass is $(\frac{a}{2}, \frac{a}{2})$.
Now, let's remove the particle at A(0,0). The new coordinates of the center of mass are:
$$x_{cm}' = \frac{m(a) + m(a) + m(0)}{3m} = \frac{2ma}{3m} = \frac{2a}{3}$$
$$y_{cm}' = \frac{m(0) + m(a) + m(a)}{3m} = \frac{2ma}{3m} = \frac{2a}{3}$$
The new center of mass is $(\frac{2a}{3}, \frac{2a}{3})$.
The shift in the position of the center of mass is the distance between the two points:
$$d = \sqrt{\left(\frac{2a}{3} - \frac{a}{2}\right)^2 + \left(\frac{2a}{3} - \frac{a}{2}\right)^2}$$
$$d = \sqrt{2\left(\frac{4a-3a}{6}\right)^2} = \sqrt{2\left(\frac{a}{6}\right)^2} = \sqrt{2} \cdot \frac{a}{6} = \frac{a\sqrt{2}}{6} = \frac{a}{3\sqrt{2}}$$