We need to evaluate the limit:
\[
L = \lim_{x_1 \to x_2} \frac{x_1 - x_2}{x_2 \ln\left(\frac{x_1}{x_2}\right)}.
\]
Step 1: Substitute a substitution to simplify the expression.
Let:
\[
x_1 = x_2 (1 + h),
\]
where \( h \to 0 \) as \( x_1 \to x_2 \).
Then,
\[
x_1 - x_2 = x_2 h,
\]
and
\[
\ln\left(\frac{x_1}{x_2}\right) = \ln(1 + h).
\]
Step 2: Substitute into the limit expression:
\[
L = \lim_{h \to 0} \frac{x_2 h}{x_2 \ln(1+h)} = \lim_{h \to 0} \frac{h}{\ln(1+h)}.
\]
Step 3: Use the known standard limit:
\[
\lim_{h \to 0} \frac{\ln(1+h)}{h} = 1.
\]
Therefore,
\[
\lim_{h \to 0} \frac{h}{\ln(1+h)} = 1.
\]
Step 4: Thus, the required limit is:
\[
\boxed{1}.
\]