Rs. 60000
Rs. 70000
Rs. 100000
Rs. 90000
Let the principal be \( P \).
Compound Interest (CI) for 2 years at 5% per annum:
The formula for CI is:
\( \text{CI} = P \left(1 + \frac{r}{100}\right)^n - P \)
Here, \( r = 5\% \), and \( n = 2 \)
So,
\( \text{CI} = P(1.05)^2 - P = P(1.1025 - 1) = 0.1025P \)
Simple Interest (SI) for 3 years at 3% per annum:
The formula for SI is:
\( \text{SI} = \frac{P \times R \times T}{100} \)
Where \( R = 3\% \), \( T = 3 \) years
So,
\( \text{SI} = P \times \frac{3 \times 3}{100} = 0.09P \)
Given:
Difference between CI and SI = ₹1125
So,
\( \text{CI} - \text{SI} = 0.1025P - 0.09P = 0.0125P \)
Hence,
\( 0.0125P = 1125 \)
Solving for \( P \):
\( \frac{125}{10000}P = 1125 \)
\( P = \frac{1125 \times 10000}{125} = 90000 \)
Therefore, the principal is ₹90000.
Correct option: (D) ₹90000
When $10^{100}$ is divided by 7, the remainder is ?