For the reaction sequence given below, the correct statement(s) is (are):
(In the options, X is any atom other than carbon and hydrogen, and it is different in P, Q, and R.)
\( pK_a \) value of the conjugate acids of the leaving groups in \( \text{P}, \text{Q} \) and \( \text{R} \) follows the order \( \text{R}>\text{Q}>\text{P} \)
Step 1: Identify the halides formed
- Compound \( \text{P} \): Cyclohexyl bromide (R–Br) - Compound \( \text{Q} \): Cyclohexyl iodide (R–I), via Finkelstein reaction - Compound \( \text{R} \): Cyclohexyl fluoride (R–F), via Swarts reaction Step 2: C–X bond enthalpy trend
Bond enthalpy order for C–X bonds generally follows: \[ \text{C–F}>\text{C–Cl}>\text{C–Br}>\text{C–I} \] So in this case: \[ \text{C–F (R)}>\text{C–Br (P)}>\text{C–I (Q)} \Rightarrow \boxed{\text{(B) is correct}} \] Why other options are incorrect: (A) C–X bond length increases with atomic size: \[ \text{C–F}<\text{C–Br}<\text{C–I} \Rightarrow \text{Bond length order: R<P<Q}, not Q>R>P \Rightarrow \text{(A) is incorrect} \] (C) Reactivity towards \( \text{S}_\text{N}2 \) depends on leaving group ability. Better leaving group → more reactive: \[ \text{I}^->\text{Br}^->\text{F}^- \Rightarrow \text{Q>P>R}, not P>R>Q \Rightarrow \text{(C) is incorrect} \] (D) \( pK_a \) of conjugate acids: \[ \text{HI}<\text{HBr}<\text{HF} \Rightarrow pK_a: R (F^-)<P (Br^-)<Q (I^-) \Rightarrow \text{(D) is incorrect} \] Final Answer Final Answer: \( \boxed{\text{(B)}} \)
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is