For the reaction sequence given below, the correct statement(s) is (are):
(In the options, X is any atom other than carbon and hydrogen, and it is different in P, Q, and R.)
\( pK_a \) value of the conjugate acids of the leaving groups in \( \text{P}, \text{Q} \) and \( \text{R} \) follows the order \( \text{R}>\text{Q}>\text{P} \)
Step 1: Identify the halides formed
- Compound \( \text{P} \): Cyclohexyl bromide (R–Br) - Compound \( \text{Q} \): Cyclohexyl iodide (R–I), via Finkelstein reaction - Compound \( \text{R} \): Cyclohexyl fluoride (R–F), via Swarts reaction Step 2: C–X bond enthalpy trend
Bond enthalpy order for C–X bonds generally follows: \[ \text{C–F}>\text{C–Cl}>\text{C–Br}>\text{C–I} \] So in this case: \[ \text{C–F (R)}>\text{C–Br (P)}>\text{C–I (Q)} \Rightarrow \boxed{\text{(B) is correct}} \] Why other options are incorrect: (A) C–X bond length increases with atomic size: \[ \text{C–F}<\text{C–Br}<\text{C–I} \Rightarrow \text{Bond length order: R<P<Q}, not Q>R>P \Rightarrow \text{(A) is incorrect} \] (C) Reactivity towards \( \text{S}_\text{N}2 \) depends on leaving group ability. Better leaving group → more reactive: \[ \text{I}^->\text{Br}^->\text{F}^- \Rightarrow \text{Q>P>R}, not P>R>Q \Rightarrow \text{(C) is incorrect} \] (D) \( pK_a \) of conjugate acids: \[ \text{HI}<\text{HBr}<\text{HF} \Rightarrow pK_a: R (F^-)<P (Br^-)<Q (I^-) \Rightarrow \text{(D) is incorrect} \] Final Answer Final Answer: \( \boxed{\text{(B)}} \)
Number of \( ^1H \) NMR signals observed for the following compound is .............
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: