(i) \(-\frac{d[A]}{dt} = \frac{1}{2} \frac{d[B]}{dt} \)
(ii) \(-\frac{d[A]}{dt} = \frac{1}{4} \frac{d[B]}{dt} \)
(iii) \(-\frac{d[A]}{dt} = \frac{d[B]}{dt} \)
(iv) \(-\frac{d[A]}{dt} = 4 \frac{d[B]}{dt} \)
In the given graph, \( E_a \) for the reverse reaction will be
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]