(i) \(-\frac{d[A]}{dt} = \frac{1}{2} \frac{d[B]}{dt} \)
(ii) \(-\frac{d[A]}{dt} = \frac{1}{4} \frac{d[B]}{dt} \)
(iii) \(-\frac{d[A]}{dt} = \frac{d[B]}{dt} \)
(iv) \(-\frac{d[A]}{dt} = 4 \frac{d[B]}{dt} \)
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $