Let the rate law be: Rate = $k[A]^x[B]^y$
For order w.r.t B (y):
Compare Expt 1 & 2 (constant [A]):
\[
\frac{9.0 \times 10^{-4}}{1.0 \times 10^{-4}} = \left(\frac{0.3}{0.1}\right)^y \Rightarrow 9 = 3^y \Rightarrow y = 2
\]
For order w.r.t A (x):
Compare Expt 2 & 3 (constant [B]):
\[
\frac{2.7 \times 10^{-3}}{9.0 \times 10^{-4}} = \left(\frac{0.3}{0.1}\right)^x \Rightarrow 3 = 3^x \Rightarrow x = 1
\]
Thus, orders are 1 (A) and 2 (B). Answer: (1).