Question:

For the logic gates shown below, the correct output is
For the logic gates shown below, the correct output is

Show Hint


Identify each gate and write its output in terms of its inputs.
A NAND gate with inputs tied together acts as a NOT gate. ($ \overline{A \cdot A} = \overline{A} $).
A NOR gate with inputs tied together acts as a NOT gate. ($ \overline{A+A} = \overline{A} $).
Use De Morgan's theorems for simplification: $\overline{X+Y} = \overline{X} \cdot \overline{Y}$ $\overline{X \cdot Y} = \overline{X} + \overline{Y}$
Other Boolean algebra rules: $X \cdot \overline{X}=0$, $X+\overline{X}=1$, $X \cdot X=X$, $X+X=X$, $X+XY=X$, $X(X+Y)=X$.
If derivation does not match options, double-check algebra or consider if the question/options might be flawed. Testing with specific input combinations can help verify equivalence or find errors.
Updated On: May 26, 2025
  • $A+B+C$
  • $\overline{A}.\overline{B}.\overline{C}$
  • $\overline{A}+\overline{B}+\overline{C}$
  • $\overline{A.B+B.C}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step-by-step Logic Gate Evaluation:

  1. Gate 1: AND gate → \( G_1 = A \cdot B \)
  2. Gate 2: AND gate → \( G_2 = B \cdot C \)
  3. Gate 3: NAND gate with both inputs as \( C \) → functions as NOT gate → \( G_3 = \overline{C} \)
  4. Gate 4: OR gate with inputs \( G_1, G_2 \) → \( G_4 = G_1 + G_2 = A \cdot B + B \cdot C \)
  5. Gate 5: NOR gate with inputs \( G_4 \) and \( G_3 \): \[ Y = \overline{G_4 + G_3} = \overline{(A \cdot B + B \cdot C) + \overline{C}} \]

Simplifying:

\[ Y = \overline{(A \cdot B + B \cdot C) + \overline{C}} \] Using De Morgan's Theorem: \[ Y = \overline{A \cdot B + B \cdot C} \cdot \overline{\overline{C}} = \overline{A \cdot B + B \cdot C} \cdot C \] Now simplify \( \overline{A \cdot B + B \cdot C} \): \[ \overline{A \cdot B + B \cdot C} = \overline{A \cdot B} \cdot \overline{B \cdot C} = (\overline{A} + \overline{B}) \cdot (\overline{B} + \overline{C}) \] Expand: \[ (\overline{A} + \overline{B}) \cdot (\overline{B} + \overline{C}) = \overline{B} + \overline{A} \cdot \overline{C} \] Multiply by \( C \): \[ Y = (\overline{B} + \overline{A} \cdot \overline{C}) \cdot C = \overline{B}C + \overline{A} \cdot \overline{C} \cdot C \] Since \( \overline{C} \cdot C = 0 \): \[ Y = \overline{B}C \]

✅ Final Simplified Output:

\[ \boxed{Y = \overline{B} \cdot C} \]

Comparison with Options:

  • (a) \( A + B + C \) — clearly not correct
  • (b) \( \overline{A} \cdot \overline{B} \cdot \overline{C} \) — output only 1 when all inputs are 0 — does not match
  • (c) \( \overline{A} + \overline{B} + \overline{C} \) — equivalent to \( \overline{A \cdot B \cdot C} \), not same as \( \overline{B}C \)
  • (d) \( \overline{A \cdot B + B \cdot C} \) — this is \( \overline{G_4} \), and not the final output (since \( G_3 \) is also involved)

Conclusion: The correct simplified expression is:

\[ \boxed{\overline{B} \cdot C} \]

However, none of the given options match this output. Therefore, the problem appears to have a flaw or mismatch between the logic diagram and the answer options.

Was this answer helpful?
0
0