Step-by-step Logic Gate Evaluation:
Simplifying:
\[ Y = \overline{(A \cdot B + B \cdot C) + \overline{C}} \] Using De Morgan's Theorem: \[ Y = \overline{A \cdot B + B \cdot C} \cdot \overline{\overline{C}} = \overline{A \cdot B + B \cdot C} \cdot C \] Now simplify \( \overline{A \cdot B + B \cdot C} \): \[ \overline{A \cdot B + B \cdot C} = \overline{A \cdot B} \cdot \overline{B \cdot C} = (\overline{A} + \overline{B}) \cdot (\overline{B} + \overline{C}) \] Expand: \[ (\overline{A} + \overline{B}) \cdot (\overline{B} + \overline{C}) = \overline{B} + \overline{A} \cdot \overline{C} \] Multiply by \( C \): \[ Y = (\overline{B} + \overline{A} \cdot \overline{C}) \cdot C = \overline{B}C + \overline{A} \cdot \overline{C} \cdot C \] Since \( \overline{C} \cdot C = 0 \): \[ Y = \overline{B}C \]
Comparison with Options:
Conclusion: The correct simplified expression is:
However, none of the given options match this output. Therefore, the problem appears to have a flaw or mismatch between the logic diagram and the answer options.