Let the each side of square lamina is d.
So, $\hspace5mm I_{EF}=I_{GH} \hspace10mm (due \, to \, symmetry) $
and $\hspace5mm I_{AC}=I_{BD} \hspace10mm (due \, to \, symmetry) $
Now, according to theorem of perpendicular axis
$\hspace10mm I_{AC}+I_{BD}=I_0$
or $\hspace10mm 2I_{AC}=I_0 \hspace5mm ...(i) $
and $\hspace10mm I_{EF}+I_{GH}=I_0$
or $\hspace10mm 2I_{EF}=I_0 \hspace5mm ...(ii) $
From Eqs. (i) and (ii), we get $I_{AC}=I_{EF}$
$\therefore \hspace5mm I_{AD}=I_{EF}+ \frac {md^2}{4}$
$\hspace5mm =\frac {md^2}{12}+ \frac {md^2}{4} \hspace5mm \bigg (as \, I_{EF}= \frac {md^2}{12}\bigg ) $
So, $\hspace5mm I_{AD}= \frac {md^2}{3}=4I_{EF}$