Step 1:
Let
\[
z = a + ib
\]
Then,
\[
iz = i(a+ib) = -b + ia
\]
and
\[
z + iz = (a-b) + i(a+b)
\]
Thus, the vertices of the triangle are:
\[
(a,b),\; (-b,a),\; (a-b,a+b)
\]
Step 2:
Form two vectors with origin at \( z \):
\[
\vec{v}_1 = iz - z = (-b-a,\; a-b)
\]
\[
\vec{v}_2 = (z+iz) - z = (-b,\; a)
\]
Step 3:
Area of triangle formed by vectors \( \vec{v}_1 \) and \( \vec{v}_2 \) is:
\[
\text{Area} = \frac{1}{2} \left|
\begin{vmatrix}
-b-a & a-b \\
-b & a
\end{vmatrix}
\right|
\]
Step 4:
Evaluate the determinant:
\[
(-b-a)(a) - (a-b)(-b)
= -ab - a^2 + ab - b^2
= -(a^2 + b^2)
\]
Step 5:
\[
\text{Area} = \frac{1}{2}(a^2 + b^2)
\]
Given:
\[
|z| = \sqrt{a^2 + b^2} = 4
\Rightarrow a^2 + b^2 = 16
\]
Step 6:
\[
\text{Area} = \frac{1}{2} \times 16 = 8
\]
Final Answer (up to two decimal places):
\[
\boxed{8.00}
\]