The amount of \(X_3Y\) at equilibrium in the reaction \(3X(g) + Y(g) \rightleftharpoons X_3Y(g)\) is influenced by temperature and pressure.
1. Temperature: If it's hot, the reaction will favor making more \(X_3Y\) if it's endothermic (needs heat), or less \(X_3Y\) if it's exothermic (releases heat).
2. Pressure: If you squeeze the gases together (increase pressure), the reaction will make more \(X_3Y\) to relieve the pressure. If you decrease pressure, it will make less \(X_3Y\) to balance things out.
So, the equilibrium amount of \(X_3Y\) depends on how hot it is and how squished the gases are, but adding a catalyst won't change how much \(X_3Y\) you end up with.
So, the correct option is (A): Temperature and Pressure.
Consider the following equilibrium,
CO(g) + 2H2(g) ↔ CH3OH(g)
0.1 mol of CO along with a catalyst is present in a 2 dm3 flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH3OH is formed. The Kp is ____ × 10-3 (nearest integer).
Given: R = 0.08 dm3 bar K-1mol-1
Assume only methanol is formed as the product and the system follows ideal gas behaviour.
The pH of a 0.01 M weak acid $\mathrm{HX}\left(\mathrm{K}_{\mathrm{a}}=4 \times 10^{-10}\right)$ is found to be 5 . Now the acid solution is diluted with excess of water so that the pH of the solution changes to 6 . The new concentration of the diluted weak acid is given as $\mathrm{x} \times 10^{-4} \mathrm{M}$. The value of x is _______ (nearest integer).
A body of mass $m$ is suspended by two strings making angles $\theta_{1}$ and $\theta_{2}$ with the horizontal ceiling with tensions $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ simultaneously. $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ are related by $\mathrm{T}_{1}=\sqrt{3} \mathrm{~T}_{2}$. the angles $\theta_{1}$ and $\theta_{2}$ are
Consider a reaction $ A + R \rightarrow Product $. The rate of this reaction is measured to be $ k[A][R] $. At the start of the reaction, the concentration of $ R $, $[R]_0$, is 10-times the concentration of $ A $, $[A]_0$. The reaction can be considered to be a pseudo first order reaction with assumption that $ k[R] = k' $ is constant. Due to this assumption, the relative error (in %) in the rate when this reaction is 40% complete, is ____. [$k$ and $k'$ represent corresponding rate constants]
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
An equilibrium represents a state in a process when the observable properties such as color, temperature, pressure, concentration etc do not show any change.
The word equilibrium means ‘balance’ which indicates that a chemical reaction represents a balance between the reactants and products taking part in the reaction. The equilibrium state is also noticed in certain physical processes such as the melting point of ice at 0℃, both ice and water are present at equilibrium.
In the case of physical processes such as the melting of solid, dissolution of salt in water etc., the equilibrium is called physical equilibrium while the equilibrium associated with chemical reaction is known as chemical equilibrium.
The chemical equilibrium in a reversible reaction is the state at which both forward and backward reactions occur at the same speed.
The stage of the reversible reaction at which the concentration of the reactants and products do not change with time is called the equilibrium state.
Read More: Calculating Equilibrium Concentration
There are two types of chemical equilibrium:
In this type, the reactants and the products of chemical equilibrium are all in the same phase. Homogenous equilibrium can be further divided into two types: Reactions in which the number of molecules of the products is equal to the number of molecules of the reactants. For example,
Reactions in which the number of molecules of the products is not equal to the total number of reactant molecules. For example,
In this type, the reactants and the products of chemical equilibrium are present in different phases. A few examples of heterogeneous equilibrium are listed below.
Thus, the different types of chemical equilibrium are based on the phase of the reactants and products.
Check Out: Equilibrium Important Questions