The relationship between the standard Gibbs free energy change (\( \Delta_r G^0 \)), the standard cell potential (\( \mathcal{E}^0 \)), and the number of electrons transferred (\( n \)) is:
\[
\Delta_r G^0 = -n F \mathcal{E}^0
\]
The number of electrons transferred in the given cell reaction can be determined by looking at the oxidation and reduction half-reactions:
Oxidation: \( H_2 (g) \rightarrow 2H^+ (aq) + 2e^- \) (\(n=2\))
Reduction: \( Hg_2Cl_2 (s) + 2e^- \rightarrow 2Hg (l) + 2Cl^- (aq) \) (\(n=2\))
So, the number of electrons transferred is \( n = 2 \).
Now, calculate the standard Gibbs free energy change at 298 K:
\[
\Delta_r G^0 = -(2 \, \text{mol e}^-) \times (96500 \, \text{C mol}^{-1}) \times (0.2676 \, \text{V})
\]
\[
\Delta_r G^0 = -51658.8 \, \text{J mol}^{-1} = -51.6588 \, \text{kJ mol}^{-1}
\]
The temperature dependence of the standard Gibbs free energy change is given by:
\[
\left(\frac{\partial \Delta_r G^0}{\partial T}\right)_P = -\Delta_r S^0
\]
We also know that:
\[
\left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = \frac{\Delta_r S^0}{nF}
\]
So, the standard entropy change (\( \Delta_r S^0 \)) is:
\[
\Delta_r S^0 = nF \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = (2 \, \text{mol e}^-) \times (96500 \, \text{C mol}^{-1}) \times (-3.19 \times 10^{-4} \, \text{V K}^{-1})
\]
\[
\Delta_r S^0 = -61.607 \, \text{J mol}^{-1} \text{K}^{-1} = -0.061607 \, \text{kJ mol}^{-1} \text{K}^{-1}
\]
The standard enthalpy change (\( \Delta_r H^0 \)) is related to \( \Delta_r G^0 \) and \( \Delta_r S^0 \) by:
\[
\Delta_r H^0 = \Delta_r G^0 + T \Delta_r S^0
\]
At 298 K:
\[
\Delta_r H^0 = -51.6588 \, \text{kJ mol}^{-1} + (298 \, \text{K}) \times (-0.061607 \, \text{kJ mol}^{-1} \text{K}^{-1})
\]
\[
\Delta_r H^0 = -51.6588 \, \text{kJ mol}^{-1} - 18.358886 \, \text{kJ mol}^{-1}
\]
\[
\Delta_r H^0 = -70.017686 \, \text{kJ mol}^{-1}
\]
Given that \( \Delta_r H^0 = -x \) kJ mol\(^{-1}\), the value of \( x \) is 70.017686.
Rounding off to two decimal places, \( x = 70.02 \). This falls within the given range of 69.00 to 71.00.