Gravitational potential (V) is constant at all points in a spherical shell. Hence, the gravitational potential gradient \((\frac{dV}{dr})\) is zero everywhere inside the spherical shell. The gravitational potential gradient is equal to the negative of gravitational intensity. Hence, intensity is also zero at all points inside the spherical shell. This indicates that gravitational forces acting at a point in a spherical shell are symmetric.
If the upper half of a spherical shell is cut out (as shown in the given figure), then the net gravitational force acting on a particle at an arbitrary point P will be in the downward direction.
Since gravitational intensity at a point is defined as the gravitational force per unit mass at that point, it will also act in the downward direction. Thus, the gravitational intensity at an arbitrary point P of the hemispherical shell has the direction as indicated by arrow e
Therefore the correct option is(B): e.
A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is:
The height from Earth's surface at which acceleration due to gravity becomes \(\frac{g}{4}\) is \(\_\_\)? (Where \(g\) is the acceleration due to gravity on the surface of the Earth and \(R\) is the radius of the Earth.)
What inference do you draw about the behaviour of Ag+ and Cu2+ from these reactions?