Step 1: For (a): $p \to q \equiv \sim p \vee q$. So $\sim q \wedge (\sim p \vee q) \equiv (\sim q \wedge \sim p) \vee (\sim q \wedge q) \equiv \sim q \wedge \sim p$.
The statement becomes $(\sim q \wedge \sim p) \to \sim p$. This is of the form $(X \wedge Y) \to Y$, which is always true (Tautology).
Step 2: For (b): $(p \vee q) \wedge \sim p \equiv (p \wedge \sim p) \vee (q \wedge \sim p) \equiv F \vee (q \wedge \sim p) \equiv q \wedge \sim p$.
The statement becomes $(q \wedge \sim p) \to q$. This is also $(X \wedge Y) \to X$, always true (Tautology).