Step 1: Analyze the sequence \( x_n \).
We first express \( x_n \) as:
\[
x_n = \sum_{k=1}^{n} \frac{k}{n^2 + k}.
\]
For large \( n \), the term \( \frac{k}{n^2 + k} \) behaves as:
\[
\frac{k}{n^2 + k} \approx \frac{k}{n^2}.
\]
Thus, we approximate the sum:
\[
x_n \approx \sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{n^2} \sum_{k=1}^{n} k = \frac{1}{n^2} \cdot \frac{n(n+1)}{2}.
\]
Simplifying, we get:
\[
x_n \approx \frac{n(n+1)}{2n^2} = \frac{n+1}{2n}.
\]
As \( n \to \infty \), \( x_n \to \frac{1}{2} \).
Step 2: Analyze the series \( \sum_{n=1}^{\infty} x_n \).
Since \( x_n \to \frac{1}{2} \) as \( n \to \infty \), the series \( \sum_{n=1}^{\infty} x_n \) does not converge, because the terms do not approach zero. Hence, the series diverges.
Final Answer:
\[
\boxed{\text{The series } \sum_{n=1}^{\infty} x_n \text{ does NOT converge.}}
\]