>
Exams
>
Mathematics
>
Matrices
>
for matrix a bmatrix 3 1 7 5 bmatrix the values of
Question:
For matrix
\(A = \begin{bmatrix}3&1\\ 7&5\end{bmatrix}\)
, the values of x and y so that
\(A^2+xI=yA\)
are:
CUET (UG) - 2023
CUET (UG)
Updated On:
May 11, 2025
x=6, y=8
x = 8,y=6
x=8, y=8
x=6, y=6
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
To find the values of \(x\) and \(y\) such that \(A^2 + xI = yA\) for the matrix \(A = \begin{bmatrix}3 & 1 \\ 7 & 5\end{bmatrix}\), we proceed as follows:
Calculate \(A^2\):
We have \(A = \begin{bmatrix}3 & 1 \\ 7 & 5\end{bmatrix}\).
Calculate \(A^2 = A \cdot A = \begin{bmatrix}3 & 1 \\ 7 & 5\end{bmatrix} \cdot \begin{bmatrix}3 & 1 \\ 7 & 5\end{bmatrix}\):
\(\begin{bmatrix}(3 \times 3) + (1 \times 7) & (3 \times 1) + (1 \times 5) \\ (7 \times 3) + (5 \times 7) & (7 \times 1) + (5 \times 5)\end{bmatrix} = \begin{bmatrix}16 & 8 \\ 46 & 32\end{bmatrix}\).
Formulate the equation:
The identity matrix \(I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\). Therefore, \(xI = x\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} = \begin{bmatrix}x & 0 \\ 0 & x\end{bmatrix}\).
We equate \(A^2 + xI\) to \(yA\):
\(\begin{bmatrix}16 & 8 \\ 46 & 32\end{bmatrix} + \begin{bmatrix}x & 0 \\ 0 & x\end{bmatrix} = \begin{bmatrix}3y & y \\ 7y & 5y\end{bmatrix}\).
This gives us two matrices that are equal if corresponding elements are equal.
Solve for \(x\) and \(y\):
Equating corresponding elements, we have:
\(16 + x = 3y\)
\(8 = y\)
\(46 = 7y\)
\(32 + x = 5y\)
From \(8 = y\), we substitute \(y = 8\) into the equations:
\(16 + x = 3(8) \Rightarrow 16 + x = 24 \Rightarrow x = 8\)
\(32 + x = 5(8) \Rightarrow 32 + x = 40 \Rightarrow x = 8\) confirms consistency.
Thus, the values are \(x = 8\) and \(y = 8\).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Matrices
If
$$ A = \begin{pmatrix} 2 & 3 \\ 1 & k \end{pmatrix} $$
and
$\det(A) = 7$, find the value of $ k $.
BITSAT - 2025
Mathematics
Matrices
View Solution
Find x, y, z if
\[ \begin{bmatrix} 5 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -2 \\ 1 & -2 & 3 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x-1 \\ y+1 \\ 2z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \]
Maharashtra Class XII - 2025
Mathematics & Statistics
Matrices
View Solution
For all \( n \in \mathbb{N} \), if \( 1^3 + 2^3 + 3^3 + \cdots + n^3>x \), then a value of \( x \) among the following is:
AP EAPCET - 2025
Mathematics
Matrices
View Solution
If $A$ and $B$ are two square matrices each of order 3 with $|A| = 3$ and $|B| = 5$, then $|2AB|$ is:
CBSE CLASS XII - 2025
Mathematics
Matrices
View Solution
If \( \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} \) is a scalar matrix, then \( x^y \) is equal to:
CBSE CLASS XII - 2025
Mathematics
Matrices
View Solution
View More Questions
Questions Asked in CUET exam
A person walks 10 m North, then turns right and walks 5 m, then turns right again and walks 10 m. What direction is he facing now?
CUET (UG) - 2025
Direction sense
View Solution
If \( 9 + 1 = 81 \), \( 5 + 2 = 49 \), then \( 7 + 3 = \) ?
CUET (UG) - 2025
Puzzle
View Solution
Statement: All apples are fruits. Some fruits are bananas.
Conclusion I: All apples are bananas.
Conclusion II: Some fruits are not bananas.
Choose the correct option:
CUET (UG) - 2025
Logical Reasoning
View Solution
What is the angle between the hour and minute hand at 3:30?
CUET (UG) - 2025
Clock and Calendar
View Solution
A train crosses a platform 200 m long in 36 seconds and a pole in 18 seconds. Find the speed of the train.
CUET (UG) - 2025
Speed, Time and Distance
View Solution
View More Questions