To find the values of \(x\) and \(y\) such that \(A^2 + xI = yA\) for the matrix \(A = \begin{bmatrix}3 & 1 \\ 7 & 5\end{bmatrix}\), we proceed as follows:
- Calculate \(A^2\):
We have \(A = \begin{bmatrix}3 & 1 \\ 7 & 5\end{bmatrix}\).
Calculate \(A^2 = A \cdot A = \begin{bmatrix}3 & 1 \\ 7 & 5\end{bmatrix} \cdot \begin{bmatrix}3 & 1 \\ 7 & 5\end{bmatrix}\):
\(\begin{bmatrix}(3 \times 3) + (1 \times 7) & (3 \times 1) + (1 \times 5) \\ (7 \times 3) + (5 \times 7) & (7 \times 1) + (5 \times 5)\end{bmatrix} = \begin{bmatrix}16 & 8 \\ 46 & 32\end{bmatrix}\).
- Formulate the equation:
The identity matrix \(I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\). Therefore, \(xI = x\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} = \begin{bmatrix}x & 0 \\ 0 & x\end{bmatrix}\).
We equate \(A^2 + xI\) to \(yA\):
\(\begin{bmatrix}16 & 8 \\ 46 & 32\end{bmatrix} + \begin{bmatrix}x & 0 \\ 0 & x\end{bmatrix} = \begin{bmatrix}3y & y \\ 7y & 5y\end{bmatrix}\).
This gives us two matrices that are equal if corresponding elements are equal.
- Solve for \(x\) and \(y\):
Equating corresponding elements, we have:
- \(16 + x = 3y\)
- \(8 = y\)
- \(46 = 7y\)
- \(32 + x = 5y\)
From \(8 = y\), we substitute \(y = 8\) into the equations:
- \(16 + x = 3(8) \Rightarrow 16 + x = 24 \Rightarrow x = 8\)
- \(32 + x = 5(8) \Rightarrow 32 + x = 40 \Rightarrow x = 8\) confirms consistency.
Thus, the values are \(x = 8\) and \(y = 8\).