Question:

For \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), if \( A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \) be such that \( A^2 = I \), then:

Updated On: Mar 27, 2025
  • \( 1 + a^2 + bc = 0 \)
  • \(1 - a^2 - bc = 0\)
  • \(1 - a^2 + bc = 0\)
  • \(1 + a^2 - bc = 0\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The matrix A is given as:

\[ A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}. \]

To compute \( A^2 \):

\[ A^2 = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & -a \end{bmatrix}. \]

\[ A^2 = \begin{bmatrix} a^2 + bc & ab - ab \\ ac - ac & bc + (-a)^2 \end{bmatrix} = \begin{bmatrix} a^2 + bc & 0 \\ 0 & bc + a^2 \end{bmatrix}. \]

Since \( A^2 = I \), we have:

\[ \begin{bmatrix} a^2 + bc & 0 \\ 0 & bc + a^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \]

Equating the diagonal elements:

\[ a^2 + bc = 1. \]

Rewriting this equation:

\[ 1 - a^2 - bc = 0. \]

Thus, the correct answer is Option (B).

Was this answer helpful?
0
0