The matrix A is given as:
\[ A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}. \]
To compute \( A^2 \):
\[ A^2 = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & -a \end{bmatrix}. \]
\[ A^2 = \begin{bmatrix} a^2 + bc & ab - ab \\ ac - ac & bc + (-a)^2 \end{bmatrix} = \begin{bmatrix} a^2 + bc & 0 \\ 0 & bc + a^2 \end{bmatrix}. \]
Since \( A^2 = I \), we have:
\[ \begin{bmatrix} a^2 + bc & 0 \\ 0 & bc + a^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \]
Equating the diagonal elements:
\[ a^2 + bc = 1. \]
Rewriting this equation:
\[ 1 - a^2 - bc = 0. \]
Thus, the correct answer is Option (B).
Let $ A = \begin{bmatrix} \alpha & -1 \\6 & \beta \end{bmatrix},\ \alpha > 0 $, such that $ \det(A) = 0 $ and $ \alpha + \beta = 1 $. If $ I $ denotes the $ 2 \times 2 $ identity matrix, then the matrix $ (1 + A)^5 $ is:
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to