Given \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) and \( A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \), we need to find the condition for \( A^2 = I \). Calculating \( A^2 \):
\[ A^2 = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \begin{bmatrix} a & b \\ c & -a \end{bmatrix} = \begin{bmatrix} a^2 + bc & ab - ab \\ ac - ac & bc + a^2 \end{bmatrix} = \begin{bmatrix} a^2 + bc & 0 \\ 0 & a^2 + bc \end{bmatrix} \]
For \( A^2 = I \):
\[ \begin{bmatrix} a^2 + bc & 0 \\ 0 & a^2 + bc \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
This implies:
\( a^2 + bc = 1 \)
Rearranging gives:
\( 1 - a^2 - bc = 0 \)
The matrix A is given as:
\[ A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}. \]
To compute \( A^2 \):
\[ A^2 = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & -a \end{bmatrix}. \]
\[ A^2 = \begin{bmatrix} a^2 + bc & ab - ab \\ ac - ac & bc + (-a)^2 \end{bmatrix} = \begin{bmatrix} a^2 + bc & 0 \\ 0 & bc + a^2 \end{bmatrix}. \]
Since \( A^2 = I \), we have:
\[ \begin{bmatrix} a^2 + bc & 0 \\ 0 & bc + a^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \]
Equating the diagonal elements:
\[ a^2 + bc = 1. \]
Rewriting this equation:
\[ 1 - a^2 - bc = 0. \]
Thus, the correct answer is Option (B).
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Identify the part of the sentence that contains a grammatical error:
Each of the boys have submitted their assignment on time.
Rearrange the following parts to form a meaningful and grammatically correct sentence:
P. a healthy diet and regular exercise
Q. are important habits
R. that help maintain good physical and mental health
S. especially in today's busy world