Question:

For any two vectors \( \vec{a} \) and \( \vec{b} \), which of the following statements is always true?

Show Hint

For any two vectors, the magnitude of their dot product is always less than or equal to the product of their magnitudes.
Updated On: Jan 27, 2025
  • \( \vec{a} \cdot \vec{b} \geq |\vec{a}| \, |\vec{b}| \)
  • \( \vec{a} \cdot \vec{b} = |\vec{a}| \, |\vec{b}| \)
  • \( \vec{a} \cdot \vec{b} \leq |\vec{a}| \, |\vec{b}| \)
  • \( \vec{a} \cdot \vec{b} \geq -|\vec{a}| \, |\vec{b}| \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Use the dot product definition.
The dot product \( \vec{a} \cdot \vec{b} \) is given by: \[ \vec{a} \cdot \vec{b} = |\vec{a}| \, |\vec{b}| \cos \theta, \] where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \). Step 2: Analyze the range of \( \cos \theta \).
Since \( -1 \leq \cos \theta \leq 1 \), it follows that: \[ -|\vec{a}| \, |\vec{b}| \leq \vec{a} \cdot \vec{b} \leq |\vec{a}| \, |\vec{b}|. \] Step 3: Conclusion.
The correct answer is: \[ \boxed{\vec{a} \cdot \vec{b} \leq |\vec{a}| \, |\vec{b}|}. \]
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions