Step 1: Use the dot product definition.
The dot product \( \vec{a} \cdot \vec{b} \) is given by:
\[
\vec{a} \cdot \vec{b} = |\vec{a}| \, |\vec{b}| \cos \theta,
\]
where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \).
Step 2: Analyze the range of \( \cos \theta \).
Since \( -1 \leq \cos \theta \leq 1 \), it follows that:
\[
-|\vec{a}| \, |\vec{b}| \leq \vec{a} \cdot \vec{b} \leq |\vec{a}| \, |\vec{b}|.
\]
Step 3: Conclusion.
The correct answer is:
\[
\boxed{\vec{a} \cdot \vec{b} \leq |\vec{a}| \, |\vec{b}|}.
\]