>
Exams
>
Mathematics
>
Vectors
>
for any three vectors a b c a b c a b c a b c
Question:
For any three vectors \( a, b, c \), \[ [a + b + c] = [a b c] = [a b c] \]
Show Hint
For vector operations like dot and cross products, always apply the distributive property when necessary.
VITEEE - 2015
VITEEE
Updated On:
Jan 12, 2026
\( a \cdot b \cdot c \)
\( a \cdot b \cdot c \)
\( a \cdot c \)
None of these
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
The product of vectors is defined and can be calculated by multiplying their individual magnitudes and applying the cross product formula for the vectors.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Vectors
Number of functions \( f: \{1, 2, \dots, 100\} \to \{0, 1\} \), that assign 1 to exactly one of the positive integers less than or equal to 98, is equal to:
JEE Main - 2025
Mathematics
Vectors
View Solution
Let \( \vec{a} \) be a position vector whose tip is the point (2, -3). If \( \overrightarrow{AB} = \vec{a} \), where coordinates of A are (–4, 5), then the coordinates of B are:
CBSE CLASS XII - 2025
Mathematics
Vectors
View Solution
If vector $\vec{a} = 2\hat{i} + m\hat{j} + \hat{k}$ and vector $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other, then the value of $m$ is
IPU CET - 2025
Mathematics
Vectors
View Solution
For a force F to be conservative, the relations to be satisfied are:
A. \(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = 0\)
B. \(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = 0\)
C. \(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = 0\)
D. \(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \neq 0\)
Choose the correct answer from the options given below:
CUET (PG) - 2025
Physics
Vectors
View Solution
If \(|\vec{A}+\vec{B}| = |\vec{A}-\vec{B}|\) then the angle between vectors \(\vec{A}\) and \(\vec{B}\) is:
CUET (PG) - 2025
Physics
Vectors
View Solution
View More Questions
Questions Asked in VITEEE exam
Find the value of \( x \) in the following equation:
\[ \frac{2}{x} + \frac{3}{x + 1} = 1 \]
VITEEE - 2025
Algebra
View Solution
In a code language, 'TIGER' is written as 'JUISF'. How will 'EQUAL' be written in that language?
VITEEE - 2025
Data Interpretation
View Solution
TUV : VYB :: PRA : ?
VITEEE - 2025
Odd one Out
View Solution
What is the pH of a solution with a \( \text{H}^+ \) concentration of \( 1 \times 10^{-3} \) mol/L?
VITEEE - 2025
Solubility Equilibria Of Sparingly Soluble Salts
View Solution
In a code language, 'TIGER' is written as 'JUISF'. How will 'EQUAL' be written in that language?
VITEEE - 2025
Odd one Out
View Solution
View More Questions