We are given:
\[
y = a \frac{t+1}{t} \text{and} x = (t + 1)^{\alpha}.
\]
First, differentiate \( y \) with respect to \( t \):
\[
\frac{dy}{dt} = a \left[ \frac{d}{dt} \left( \frac{t+1}{t} \right) \right].
\]
Using the quotient rule:
\[
\frac{dy}{dt} = a \left( \frac{t \cdot 1 - (t+1) \cdot 1}{t^2} \right) = a \left( \frac{t - (t+1)}{t^2} \right) = a \left( \frac{-1}{t^2} \right).
\]
Thus,
\[
\frac{dy}{dt} = -\frac{a}{t^2}.
\]
Next, differentiate \( x \) with respect to \( t \):
\[
\frac{dx}{dt} = \frac{d}{dt} \left( (t+1)^{\alpha} \right) = \alpha (t + 1)^{\alpha-1}.
\]
Now, apply the chain rule to find \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-\frac{a}{t^2}}{\alpha (t + 1)^{\alpha-1}}.
\]
Thus,
\[
\frac{dy}{dx} = -\frac{a}{\alpha t^2 (t + 1)^{\alpha-1}}.
\]
Conclusion:
The value of \( \frac{dy}{dx} \) is
\[
\boxed{-\frac{a}{\alpha t^2 (t + 1)^{\alpha-1}}}.
\]