Given that, \( k \) divides \( m + 2n \) and \( 3m + 4n \).
Since \( k \) divides \( m + 2n \),
\(\Rightarrow k\) also divides \( 3(m + 2n) \)
\(\Rightarrow k \) divides \( 3m + 6n \).
Also, \( k \) divides \( 3m + 4n \).
Now, if \( k \) divides both \( 3m + 6n \) and \( 3m + 4n \), then it also divides their difference:
\[ (3m + 6n) - (3m + 4n) = 2n \] So, \( k \) divides \( 2n \).
Again, since \( k \) divides \( m + 2n \), \[ \Rightarrow k \text{ divides } 2(m + 2n) = 2m + 4n \] And \( k \) divides \( 3m + 4n \).
Taking the difference: \[ (3m + 4n) - (2m + 4n) = m \] So, \( k \) divides \( m \).
Hence, \( m \) and \( 2n \) are divisible by \( k \).
Correct option: (D) \( m \) and \( 2n \).
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: