Question:

For any \(n≥0\) the value of \(\sum_{r=0}^n \dfrac{(4r+3).(nC_r)^2}{(2n+3)}\) is 

Updated On: Jun 3, 2024
  • \(2nC_{n-1}\)

  • \(8nC_n\)

  • \(2nC_{n+1}\)

  • \(nC_{n-2}\)

  • \(2nC_n\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is

Solution and Explanation

Given that

\(\sum_{r=0}^n \dfrac{(4r+3).(nC_r)^2}{(2n+3)}\)

condition is \(n≥0\)

So lets put \(n=1\)

Then the parent term will be 

\(\dfrac{3+7}{5}=2\)

So we can represent the term as : \(2nC_n\) (_Ans)

Was this answer helpful?
2
1

Top Questions on permutations and combinations

View More Questions