\(2nC_{n-1}\)
\(8nC_n\)
\(2nC_{n+1}\)
\(nC_{n-2}\)
\(2nC_n\)
Given:
\(\sum_{r=0}^n \dfrac{(4r+3).(nC_r)^2}{(2n+3)}\)
condition is \(n≥0\)
So lets put \(n=1\)
Then the parent term will be
\(\dfrac{3+7}{5}=2\)
So we can represent the term as : \(2nC_n\)
Let \( S = \sum_{r=0}^n \frac{(4r+3) \binom{n}{r}^2}{2n+3} \).
Using the identity:
\[ \sum_{r=0}^n r \binom{n}{r}^2 = n \binom{2n-1}{n-1} \]
and
\[ \sum_{r=0}^n \binom{n}{r}^2 = \binom{2n}{n} \]
We can rewrite the sum as:
\[ S = \sum_{r=0}^n \frac{4r \binom{n}{r}^2}{2n+3} + \sum_{r=0}^n \frac{3 \binom{n}{r}^2}{2n+3} \] \[ S = \frac{4}{2n+3} \sum_{r=0}^n r \binom{n}{r}^2 + \frac{3}{2n+3} \sum_{r=0}^n \binom{n}{r}^2 \]
Using the identities above:
\[ S = \frac{4}{2n+3} n \binom{2n-1}{n-1} + \frac{3}{2n+3} \binom{2n}{n} \] \[ S = \frac{4n \binom{2n-1}{n-1} + 3 \binom{2n}{n}}{2n+3} \]
We can use the identity \( \binom{n}{r} = \binom{n}{n-r} \):
\[ \sum_{r=0}^n r \binom{n}{r}^2 = \sum_{r=0}^n (n-r) \binom{n}{r}^2 = n \sum_{r=0}^n \binom{n}{r}^2 - \sum_{r=0}^n r \binom{n}{r}^2 \] \[ 2 \sum_{r=0}^n r \binom{n}{r}^2 = n \binom{2n}{n} \] \[ \sum_{r=0}^n r \binom{n}{r}^2 = \frac{n}{2} \binom{2n}{n} \]
Then
\[ S = \frac{4}{2n+3} \left( \frac{n}{2} \binom{2n}{n} \right) + \frac{3}{2n+3} \binom{2n}{n} = \frac{2n \binom{2n}{n} + 3 \binom{2n}{n}}{2n+3} = \frac{(2n+3)\binom{2n}{n}}{2n+3} = \binom{2n}{n} \]
Therefore,
\[ S = \binom{2n}{n} \]