\([\frac{ 3}{7} ,\frac{ 8}{9} )\)
\([ \frac{4}{9} ,\frac{ 8}{9} ]\)
\([\frac{ 3}{7} , \frac{1}{2} )\)
\(( \frac{3}{7} , \frac{1}{2} )\)
We're given the function:
\( f(x) = \frac{x^2 + 2x + 4}{2x^2 + 4x + 9} \)
Let's simplify the numerator by completing the square:
\( x^2 + 2x + 4 = (x+1)^2 + 3 \)
Now handle the denominator:
\( 2x^2 + 4x + 9 = 2(x^2 + 2x) + 9 = 2((x+1)^2 + 1) + 7 = 2(x+1)^2 + 7 \)
So, the function becomes:
\( f(x) = \frac{(x+1)^2 + 3}{2(x+1)^2 + 7} \)
Let’s define: \( k = (x+1)^2 + 3 \).
Then: \( (x+1)^2 = k - 3 \)
Substitute back into the denominator:
\( 2(x+1)^2 + 7 = 2(k - 3) + 7 = 2k - 6 + 7 = 2k + 1 \)
So the function becomes:
\( f(x) = \frac{k}{2k + 1} \)
We're now studying the behavior of:
\( \frac{k}{2k + 1} \)
Minimum Value of k: Since \( (x+1)^2 \geq 0 \), the minimum value of \( k = (x+1)^2 + 3 \) is 3.
Find minimum of \( f(x) \):
\( f_{\text{min}} = \frac{3}{2(3) + 1} = \frac{3}{7} \)
As \( k \to \infty \), the function becomes:
\( \frac{k}{2k + 1} \to \frac{1}{2} \)
But it never actually reaches \( \frac{1}{2} \), because of the "+1" in the denominator.
Therefore, the range of the function is:
\[ \left[ \frac{3}{7}, \frac{1}{2} \right) \]
When $10^{100}$ is divided by 7, the remainder is ?