We are given the inequality:
\[ 2.25 \leq 2 + 2^{n+2} \leq 202 \]
\[ 2.25 - 2 \leq 2^{n+2} \leq 202 - 2 \\ \Rightarrow 0.25 \leq 2^{n+2} \leq 200 \]
We need to find integer values of \( n \) such that: \[ 0.25 \leq 2^{n+2} \leq 200 \]
Therefore, possible integral values of \( n \) satisfying the inequality are: \[ n \in \{-4, -3, -2, -1, 0, 1, 2, 3, 4, 5\} \quad \text{(Total 10 values)} \]
The expression \( 3 + 3^{n+1} \) is always integral for any integer \( n \), but if further context requires that: \[ 3^{n+1} \in \mathbb{Z}, \text{ and positive (e.g., defined only for } n+1 \geq 0) \Rightarrow n \geq -1 \]
Combine with earlier range \( -4 \leq n \leq 5 \), the intersection becomes: \[ n \in \{-1, 0, 1, 2, 3, 4, 5\} \quad \text{(7 values)} \]
There are \( \boxed{7} \) possible values of \( n \).
Given:
\[ 2.25 < 2 + 2^{n+2} < 202 \]
\[ 2.25 - 2 < 2^{n+2} < 202 - 2 \\ \Rightarrow 0.25 < 2^{n+2} < 200 \]
\[ \log_2(0.25) < n + 2 < \log_2(200) \]
Now evaluate logs:
\[ \log_2(0.25) = -2, \quad \log_2(200) \approx 7.64 \]
\[ \Rightarrow -2 < n + 2 < 7 \]
\[ -2 - 2 < n < 7 - 2 \Rightarrow -4 < n < 5 \]
From the range \( -4 < n < 5 \), possible integer values are:
\[ n = -3, -2, -1, 0, 1, 2, 3, 4 \quad \text{(Total = 8 values)} \]
To ensure \( 3 + 3^{n+1} \) is defined and an integer, \( n+1 \) must be a non-negative integer.
\[ \Rightarrow n + 1 \geq 0 \Rightarrow n \geq -1 \]
Now intersect with the previous range \( -4 < n < 5 \), we get:
\[ n = -1, 0, 1, 2, 3, 4 \quad \text{(Total = 6 values)} \]
But if \( n = 5 \) is also included in original inequality \( 2^{n+2} < 200 \) (since \( 2^{7} = 128 \)), then:
\[ n = -1, 0, 1, 2, 3, 4, 5 \quad \text{(Final Total = 7 values)} \]
\[ \boxed{7} \text{ possible integer values of } n \]
When $10^{100}$ is divided by 7, the remainder is ?