Step 1: Understand the Relationship Between Pressure Drop and Viscosity.
For laminar flow in a pipe, the pressure drop (\(\Delta P\)) is directly proportional to the fluid viscosity, which means higher viscosity increases the pressure drop. Hence, Option (A) is true.
Step 2: Understand the Relationship Between Pressure Drop and Pipe Length.
The pressure drop increases with the length of the pipe. Longer pipes offer more resistance to flow, so Option (B) is also true.
Step 3: Understand the Relationship Between Pressure Drop and Pipe Diameter.
The pressure drop decreases with an increase in pipe diameter because the resistance to flow decreases.
Therefore, Option (C) is false.
Step 4: Confirm the Inverse Relationship with Viscosity.
Since pressure drop depends on viscosity, Option (D) is false.
Consider two identical tanks with a bottom hole of diameter \( d \). One tank is filled with water and the other tank is filled with engine oil. The height of the fluid column \( h \) is the same in both cases. The fluid exit velocity in the two tanks are \( V_1 \) and \( V_2 \). Neglecting all losses, which one of the following options is correct?

A pitot tube connected to a U-tube mercury manometer measures the speed of air flowing in the wind tunnel as shown in the figure below. The density of air is 1.23 kg m\(^{-3}\) while the density of water is 1000 kg m\(^{-3}\). For the manometer reading of \( h = 30 \) mm of mercury, the speed of air in the wind tunnel is _________ m s\(^{-1}\) (rounded off to 1 decimal place). 
An ideal monoatomic gas is contained inside a cylinder-piston assembly connected to a Hookean spring as shown in the figure. The piston is frictionless and massless. The spring constant is 10 kN/m. At the initial equilibrium state (shown in the figure), the spring is unstretched. The gas is expanded reversibly by adding 362.5 J of heat. At the final equilibrium state, the piston presses against the stoppers. Neglecting the heat loss to the surroundings, the final equilibrium temperature of the gas is __________ K (rounded off to the nearest integer).
The residence-time distribution (RTD) function of a reactor (in min$^{-1}$) is 
The mean residence time of the reactor is __________ min (rounded off to 2 decimal places).}
Ideal nonreacting gases A and B are contained inside a perfectly insulated chamber, separated by a thin partition, as shown in the figure. The partition is removed, and the two gases mix till final equilibrium is reached. The change in total entropy for the process is _________J/K (rounded off to 1 decimal place).
Given: Universal gas constant \( R = 8.314 \) J/(mol K), \( T_A = T_B = 273 \) K, \( P_A = P_B = 1 \) atm, \( V_B = 22.4 \) L, \( V_A = 3V_B \).
The following data is given for a ternary \(ABC\) gas mixture at 12 MPa and 308 K:
\(y_i\): mole fraction of component \(i\) in the gas mixture
\(\hat{\phi}_i\): fugacity coefficient of component \(i\) in the gas mixture at 12 MPa and 308 K
The fugacity of the gas mixture is __________ MPa (rounded off to 3 decimal places).