Step 1: Use energy relations in SHM
In simple harmonic motion, the total mechanical energy \(E = \frac{1}{2}kA^2\) is constant. At any displacement \(x\), the potential energy \(U = \frac{1}{2}kx^2\), and kinetic energy \(K = E - U = \frac{1}{2}k(A^2 - x^2)\).
Step 2: Use the given displacement
Given \(x = \dfrac{A}{2}\), so: \[ U = \frac{1}{2}k\left(\frac{A}{2}\right)^2 = \frac{1}{2}k\cdot \frac{A^2}{4} = \frac{1}{8}kA^2 \] \[ K = \frac{1}{2}kA^2 - \frac{1}{8}kA^2 = \frac{3}{8}kA^2 \] Step 3: Ratio of Kinetic to Potential energy
\[ \frac{K}{U} = \frac{\frac{3}{8}kA^2}{\frac{1}{8}kA^2} = \frac{3}{1} \]
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)