Question:

For a Linear Programming Problem (LPP), the given objective function is $Z = x + 2y$. The feasible region PQRS determined by the set of constraints is shown as a shaded region in the graph.

The point $P = ( \frac{3}{13}, \frac{24}{13} )$, $Q = ( \frac{3}{15}, \frac{15}{4} )$, $R = ( \frac{7}{3}, \frac{3}{2} )$, $S = ( \frac{18}{7}, \frac{7}{7} )$. Which of the following statements is correct?

Show Hint

For Linear Programming Problems, always evaluate the objective function at the corner points of the feasible region to find the maximum or minimum values.
Updated On: Jun 23, 2025
  • $Z$ is minimum at $S \left( \frac{18}{7}, \frac{7}{7} \right)$
  • $Z$ is maximum at $R \left( \frac{7}{3}, \frac{3}{2} \right)$
  • $(\text{Value of } Z \text{ at } P)>(\text{Value of } Z \text{ at } Q)$
  • $(\text{Value of } Z \text{ at } Q)<(\text{Value of } Z \text{ at } R)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We are given the objective function $Z = x + 2y$ and the coordinates of the points $P$, $Q$, $R$, and $S$. To evaluate the objective function at each point, we substitute the values of $x$ and $y$ into $Z = x + 2y$. - At point $P \left( \frac{3}{13}, \frac{24}{13} \right)$, we get: \[ Z_P = \frac{3}{13} + 2 \times \frac{24}{13} = \frac{3}{13} + \frac{48}{13} = \frac{51}{13}. \] - At point $Q \left( \frac{3}{15}, \frac{15}{4} \right)$, we get: \[ Z_Q = \frac{3}{15} + 2 \times \frac{15}{4} = \frac{3}{15} + \frac{30}{4} = \frac{3}{15} + \frac{30}{4} = \frac{3}{15} + \frac{120}{15} = \frac{123}{15} = 8.2. \] - At point $R \left( \frac{7}{3}, \frac{3}{2} \right)$, we get: \[ Z_R = \frac{7}{3} + 2 \times \frac{3}{2} = \frac{7}{3} + 3 = \frac{7}{3} + \frac{9}{3} = \frac{16}{3} = 5.33. \] - At point $S \left( \frac{18}{7}, \frac{7}{7} \right)$, we get: \[ Z_S = \frac{18}{7} + 2 \times 1 = \frac{18}{7} + 2 = \frac{18}{7} + \frac{14}{7} = \frac{32}{7} \approx 4.57. \] Thus, the correct statement is $(\text{Value of } Z \text{ at } P)>(\text{Value of } Z \text{ at } Q)$.
Was this answer helpful?
0
0

Top Questions on Linear Programming Problem

View More Questions

Questions Asked in CBSE CLASS XII exam

View More Questions