Step 1: Write the expression for K$_p$.
For the given reaction:
\[
\text{NH}_3(g) \longrightarrow \frac{1}{2} \text{N}_2(g) + \frac{3}{2} \text{H}_2(g)
\]
At equilibrium, let the dissociation be $\alpha$. At time $t = 0$, the initial amount of NH$_3$ is 1 mole, and at equilibrium, the amounts of the products will be as follows:
- NH$_3$ = (1 - $\alpha$) moles
- N$_2$ = $\frac{\alpha}{2}$ moles
- H$_2$ = $\frac{3\alpha}{2}$ moles
The total pressure at equilibrium is given as $\sqrt{5}$ atm. Using the expression for the total pressure $P_T$, we can write:
\[
P_T = \left( \frac{\alpha}{2} + \frac{3\alpha}{2} \right) \cdot \frac{RT}{V} = \sqrt{5} \text{ atm}
\]
Step 2: Express K$_p$.
We know that:
\[
K_p = \frac{(P_{\text{N}_2})^{1/2} (P_{\text{H}_2})^{3/2}}{(P_{\text{NH}_3})}
\]
Substitute the equilibrium concentrations in terms of $\alpha$:
\[
K_p = \frac{(\frac{\alpha}{2})^{1/2} (\frac{3\alpha}{2})^{3/2}}{(1-\alpha)}
\]
Simplify this expression using the given value for $K_p = 9$ atm:
\[
9 = \left( \frac{\alpha}{2} \right)^{1/2} \left( \frac{3\alpha}{2} \right)^{3/2} \cdot \frac{P_T}{1+\alpha}
\]
Substitute $P_T = \sqrt{5}$:
\[
9 = \left( \frac{\alpha}{2} \right)^{1/2} \left( \frac{3\alpha}{2} \right)^{3/2} \times \frac{\sqrt{5}}{1 + \alpha}
\]
Step 3: Solve for $\alpha$.
After simplifying, we obtain:
\[
9 = \frac{(\alpha^{1/2}) (3\alpha^{3/2})}{(1-\alpha)}
\]
Simplifying further:
\[
9 = \frac{\alpha^2}{4(1-\alpha)}
\]
Solving for $\alpha$, we get:
\[
\alpha^2 = 0.8
\]
So, $\alpha = \sqrt{0.8}$.
Step 4: Conclusion.
Finally, to find the value of 7$\alpha^2$:
\[
7\alpha^2 = 7 \times 0.8 = 5.6
\]