
Calculation of Energy Required for DNA Denaturation
The given DNA sequence contains:
Step 1: Energy Contributions
Each A-T pair contributes 2 hydrogen bonds, each requiring 1 kcal of energy:
\[ 7 \times 2 \times 1 = 14 \, \text{kcal} \]
Each G-C pair contributes 3 hydrogen bonds, each requiring 1.5 kcal of energy:
\[ 6 \times 3 \times 1.5 = 27 \, \text{kcal} \]
Step 2: Total Energy Required
\[ \text{Total Energy} = 14 + 27 = 41 \, \text{kcal} \]
The total energy required for DNA denaturation is 41 kcal.
To solve the problem, we need to calculate the total energy required to break all hydrogen bonds in the given double-stranded DNA sequence.
1. Given DNA strand:
5’ — A G T C A C G T A A G T C — 3’
2. Complementary strand:
Using base pairing rules:
A pairs with T, G with C, T with A, C with G, etc.
Complementary strand (3’ to 5’):
3’ — T C A G T G C A T T C A G — 5’
3. Count number of A-T and G-C base pairs:
Count each base pair along the strand:
- A-T pairs: Count bases A in given strand (positions 1, 5, 9, 10)
Number of A-T pairs = 4
- G-C pairs: Count bases G and C in given strand:
G at positions 2, 7, 11 (3 times)
C at positions 4, 6, 12 (3 times)
Total G-C pairs = 6
4. Calculate energy contributed by each base pair:
- Energy per A-T pair = 2 H-bonds × 1.0 kcal/mol = 2.0 kcal/mol
- Energy per G-C pair = 3 H-bonds × 1.5 kcal/mol = 4.5 kcal/mol
5. Calculate total energy required to split DNA strands:
\[ E = (\text{number of A-T pairs} \times 2.0) + (\text{number of G-C pairs} \times 4.5) \] \[ E = (4 \times 2.0) + (6 \times 4.5) = 8 + 27 = 35 \, \text{kcal/mol} \]
6. Check for missing pairs:
The strand has 13 bases, meaning 12 base pairs.
We counted 4 A-T and 6 G-C pairs = 10 pairs total.
Remaining 2 bases at positions 8 and 13:
- Position 8 = T (pairs with A)
- Position 13 = C (pairs with G)
Add these pairs:
- T-A pair (1 more A-T pair)
- C-G pair (1 more G-C pair)
7. Update counts and energy:
- A-T pairs = 4 + 1 = 5
- G-C pairs = 6 + 1 = 7
Total energy:
\[ E = (5 \times 2.0) + (7 \times 4.5) = 10 + 31.5 = 41.5 \, \text{kcal/mol} \]
Final Answer:
The energy required to split the double strand DNA into two single strands is approximately \(\boxed{41}\) kcal mol\(^{-1}\).

Match List-I with List-II. 
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
Monocyclic compounds $ P, Q, R $ and $ S $ are the major products formed in the reaction sequences given below.
The product having the highest number of unsaturated carbon atom(s) is: