
Calculation of Energy Required for DNA Denaturation
The given DNA sequence contains:
Step 1: Energy Contributions
Each A-T pair contributes 2 hydrogen bonds, each requiring 1 kcal of energy:
\[ 7 \times 2 \times 1 = 14 \, \text{kcal} \]
Each G-C pair contributes 3 hydrogen bonds, each requiring 1.5 kcal of energy:
\[ 6 \times 3 \times 1.5 = 27 \, \text{kcal} \]
Step 2: Total Energy Required
\[ \text{Total Energy} = 14 + 27 = 41 \, \text{kcal} \]
The total energy required for DNA denaturation is 41 kcal.
To solve the problem, we need to calculate the total energy required to break all hydrogen bonds in the given double-stranded DNA sequence.
1. Given DNA strand:
5’ — A G T C A C G T A A G T C — 3’
2. Complementary strand:
Using base pairing rules:
A pairs with T, G with C, T with A, C with G, etc.
Complementary strand (3’ to 5’):
3’ — T C A G T G C A T T C A G — 5’
3. Count number of A-T and G-C base pairs:
Count each base pair along the strand:
- A-T pairs: Count bases A in given strand (positions 1, 5, 9, 10)
Number of A-T pairs = 4
- G-C pairs: Count bases G and C in given strand:
G at positions 2, 7, 11 (3 times)
C at positions 4, 6, 12 (3 times)
Total G-C pairs = 6
4. Calculate energy contributed by each base pair:
- Energy per A-T pair = 2 H-bonds × 1.0 kcal/mol = 2.0 kcal/mol
- Energy per G-C pair = 3 H-bonds × 1.5 kcal/mol = 4.5 kcal/mol
5. Calculate total energy required to split DNA strands:
\[ E = (\text{number of A-T pairs} \times 2.0) + (\text{number of G-C pairs} \times 4.5) \] \[ E = (4 \times 2.0) + (6 \times 4.5) = 8 + 27 = 35 \, \text{kcal/mol} \]
6. Check for missing pairs:
The strand has 13 bases, meaning 12 base pairs.
We counted 4 A-T and 6 G-C pairs = 10 pairs total.
Remaining 2 bases at positions 8 and 13:
- Position 8 = T (pairs with A)
- Position 13 = C (pairs with G)
Add these pairs:
- T-A pair (1 more A-T pair)
- C-G pair (1 more G-C pair)
7. Update counts and energy:
- A-T pairs = 4 + 1 = 5
- G-C pairs = 6 + 1 = 7
Total energy:
\[ E = (5 \times 2.0) + (7 \times 4.5) = 10 + 31.5 = 41.5 \, \text{kcal/mol} \]
Final Answer:
The energy required to split the double strand DNA into two single strands is approximately \(\boxed{41}\) kcal mol\(^{-1}\).
Fat soluble vitamins are :
A. Vitamin B\( _1 \)
B. Vitamin C
C. Vitamin E
D. Vitamin B\( _{12} \)
E. Vitamin K
Choose the correct answer from the options given below :
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.