For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true?
| \([A]\) (mol/L) | \(t_{1/2}\) (min) |
|---|---|
| 0.100 | 200 |
| 0.025 | 100 |
A. The order of the reaction is \( \frac{1}{2} \).
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min.
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M.
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M.
One mole of an ideal gas expands isothermally and reversibly from $10 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ at $300 \mathrm{~K} . \Delta \mathrm{U}$, q and work done in the process respectively are : Given : $\mathrm{R}=8.3 \mathrm{JK}^{-1}$ and $\mathrm{mol}^{-1}$ In $10=2.3$ $\log 2=0.30$ $\log 3=0.48$