Compute the product \( PQ \):
\( PQ = \begin{bmatrix} 0 & -a \\ 2a & b \end{bmatrix} \cdot \begin{bmatrix} b & a \\ -b & 0 \end{bmatrix} \).
Perform the matrix multiplication:
\( PQ = \begin{bmatrix} (0)(b) + (-a)(-b) & (0)(a) + (-a)(0) \\ (2a)(b) + (b)(-b) & (2a)(a) + (b)(0) \end{bmatrix} \).
Simplify:
\( PQ = \begin{bmatrix} ab & 0 \\ 2ab - b^2 & 2a^2 \end{bmatrix} \).
Equating \( PQ \) to \(\begin{bmatrix} 2 & 0 \\ 3 & 8 \end{bmatrix}\), we get:
\( ab = 2 \), \( 2ab - b^2 = 3 \), \( 2a^2 = 8 \).
From \( 2a^2 = 8 \), solve for \( a \):
\( a^2 = 4 \implies a = 2 \quad \text{(as } a > 0 \text{)} \).
Substitute \( a = 2 \) into \( ab = 2 \):
\( 2b = 2 \implies b = 1 \).
Now calculate \( (a + b)^{ab} \): \( a + b = 2 + 1 = 3 \), \( ab = (2)(1) = 2 \).
\( (a + b)^{ab} = 3^2 = 9 \).
Thus, the value of \( (a + b)^{ab} \) is 9.
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |