For a $3 \times 3$ matrix $A$, if $A(\operatorname{adj} A) = \begin{bmatrix} 99 & 0 & 0 \\0 & 99 & 0 \\0 & 0 & 99 \end{bmatrix}$, then $\det(A)$ is equal to:
Show Hint
The product \(A \cdot \operatorname{adj}(A)\) equals \(\det(A)\) times the identity matrix.
Recall the matrix identity for any square matrix \(A\):
\[
A \cdot \operatorname{adj}(A) = \det(A) I
\]
Where \(I\) is the identity matrix of the same order.
Given:
\[
A \cdot \operatorname{adj}(A) = \begin{bmatrix} 99 & 0 & 0 \\ 0 & 99 & 0 \\ 0 & 0 & 99 \end{bmatrix} = 99 I
\]
Comparing this with the identity:
\[
A \cdot \operatorname{adj}(A) = \det(A) I
\]
We get:
\[
\det(A) = 99
\]