Step 1: Find two vectors in the plane.
The vectors \( \vec{AB} \) and \( \vec{AC} \) are in the plane. They are given by:
\[
\vec{AB} = \langle 0 - 1, 2 - 1, 3 - 2 \rangle = \langle -1, 1, 1 \rangle
\]
\[
\vec{AC} = \langle 4 - 1, 5 - 1, 6 - 2 \rangle = \langle 3, 4, 4 \rangle
\]
Step 2: Find the normal vector to the plane.
The normal vector \( \vec{n} \) is given by the cross product of \( \vec{AB} \) and \( \vec{AC} \):
\[
\vec{n} = \vec{AB} \times \vec{AC}
\]
\[
\vec{n} = \langle -1, 1, 1 \rangle \times \langle 3, 4, 4 \rangle
\]
Using the formula for the cross product:
\[
\vec{n} = \langle (1 \cdot 4 - 1 \cdot 4), (1 \cdot 3 - (-1) \cdot 4), (-1 \cdot 4 - 1 \cdot 3) \rangle
\]
\[
\vec{n} = \langle 0, 7, -7 \rangle
\]
Step 3: Write the vector equation of the plane.
The vector equation of the plane is:
\[
\vec{r} \cdot \vec{n} = \vec{A} \cdot \vec{n}
\]
Substituting \( \vec{A} = \langle 1, 1, 2 \rangle \) and \( \vec{n} = \langle 0, 7, -7 \rangle \):
\[
\vec{r} \cdot \langle 0, 7, -7 \rangle = \langle 1, 1, 2 \rangle \cdot \langle 0, 7, -7 \rangle
\]
\[
\vec{r} \cdot \langle 0, 7, -7 \rangle = 7 - 14 = -7
\]
Thus, the vector equation of the plane is:
\[
\vec{r} \cdot \langle 0, 7, -7 \rangle = -7
\]
Final Answer: The vector equation of the plane is: \[ \vec{r} \cdot \langle 0, 7, -7 \rangle = -7 \]
Solve the following assignment problem for minimization :
Find x if the cost of living index is 150 :