Find the values of y for which the distance between the points P(2, – 3) and Q(10, y) is 10 units?
It is given that the distance between (2,-3) and (10,y) is 10.
Therefore, \(\sqrt{(2-10)^2+(-3-y)^2}=10\)
\(\sqrt{(-8)^2+(3+y)^2}=10\)
\(64+(y+3)^2=100\)
\((y+3)^2=36\)
\(y+3=\pm 6\)
\(y+3=6\) or \(y+3=-6\)
Therefore, \(y=3\) or \(-9\)
Given $\triangle ABC \sim \triangle PQR$, $\angle A = 30^\circ$ and $\angle Q = 90^\circ$. The value of $(\angle R + \angle B)$ is

परंपरागत भोजन को लोकप्रिय कैसे बनाया जा सकता है ?
i. उपलब्ध करवाकर
ii. प्रचार-प्रसार द्वारा
iii. बिक्री की विशेष व्यवस्था करके
iv. घर-घर मुफ्त अभियान चलाकर विकल्प: