We will use the distributive property of the cross product:
\[
\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}
\]
\[
\vec{b} \times (\vec{c} + \vec{a}) = \vec{b} \times \vec{c} + \vec{b} \times \vec{a}
\]
\[
\vec{c} \times (\vec{a} + \vec{b}) = \vec{c} \times \vec{a} + \vec{c} \times \vec{b}
\]
Now substitute these into the original expression:
\[
\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b})
\]
\[
= (\vec{a} \times \vec{b} + \vec{a} \times \vec{c}) + (\vec{b} \times \vec{c} + \vec{b} \times \vec{a}) + (\vec{c} \times \vec{a} + \vec{c} \times \vec{b})
\]
Rearranging terms:
\[
= (\vec{a} \times \vec{b} + \vec{b} \times \vec{a}) + (\vec{a} \times \vec{c} + \vec{c} \times \vec{a}) + (\vec{b} \times \vec{c} + \vec{c} \times \vec{b})
\]
Now, using the property that \( \vec{u} \times \vec{v} = -\vec{v} \times \vec{u} \), we have:
\[
\vec{a} \times \vec{b} = - \vec{b} \times \vec{a}, \quad \vec{a} \times \vec{c} = - \vec{c} \times \vec{a}, \quad \vec{b} \times \vec{c} = - \vec{c} \times \vec{b}
\]
Thus, the terms cancel each other out:
\[
\vec{a} \times \vec{b} + \vec{b} \times \vec{a} = 0, \quad \vec{a} \times \vec{c} + \vec{c} \times \vec{a} = 0, \quad \vec{b} \times \vec{c} + \vec{c} \times \vec{b} = 0
\]
So, the entire expression equals zero:
\[
0
\]
Thus, the correct answer is:
\[
\boxed{0}
\]