(i) \(y + 120° = 180° \)(Linear pair)
\(y= 180° - 120\degree = 60\degree x + y + 50° = 180°\) (Angle sum property) \(x + 60° + 50°\)
= \(180° x + 110° = 180° x\)
= \(180° - 110° = 70°\)
(ii) \(y = 80°\) (Vertically opposite angles)
\(y + x + 50° = 180°\) (Angle sum property)
\(80° + x + 50° = 180° x + 130\degree = 180°\)
\(x = 180° - 130 º = 50°\)
(iii) \(y + 50° + 60° = 180°\) (Angle sum property)
\(y = 180° - 60° - 50° = 70° x + y = 180°\)
(Linear pair) \(x = 180° - y = 180° - 70°\)
= \(110°\)
(iv) x = 60 º (Vertically opposite angles)
\(30° + x + y = 180° 30° + 60° + y =180° y = 180° - 30° - 60° = 90°\)
(v) \(y = 90°\) (Vertically opposite angles) \(x + x +y = 180°\) (Angle sum property)
\(2x + y = 180° 2x+ 90° = 180°\)
\(x = \frac{90\degree}{2}=45\degree\)
(vi)
\(y = x\) (Vertically opposite angles) \(a = x\) (Vertically opposite angles) \(b = x\) (Vertically opposite angles) \(a + b + y\) = \(180°\) (Angle sum property) \(x + x + x = 180°\)
\(3x = 180°\)
\(x = \frac{180\degree}{3}=60\degree\)
\(y = x = 60°\)
Match the items given in Column I with one or more items of Column II.
Column I | Column II |
(a) A plane mirror | (i) Used as a magnifying glass. |
(b) A convex mirror | (ii) Can form image of objects spread over a large area. |
(c) A convex lens | (iii) Used by dentists to see enlarged image of teeth. |
(d) A concave mirror | (iv) The image is always inverted and magnified. |
(e) A concave lens | (v) The image is erect and of the same size as the object. |
- | (vi) The image is erect and smaller in size than the object. |