
The sum of all interior angles of a triangle is \(180°\). By using this property, these problems can be solved as follows.
(i) \(x + 50° + 60°\)
= \(180° x + 110° = 180° x\)
= \(180° -110° = 70°\)
(ii) \(x + 90° +30°\)
= \(180° x + 120°\) =\(180° x\)
= \(180° - 120°\)
=\(60°\)
(iii) \(x + 30° + 110° =180° x + 140° = 180°\)
\(x = 180° - 140° = 40°\)
(iv) \(50° + x + x = 180°\)
\(50° + 2x = 180°\)
\(2x = 180° - 50° = 130°\)
\(x= \frac{130\degree}{2}=65\degree\)
(v) \(x + x + x = 180°\)
\(3x = 180°\)
\(x=\frac{180}{3}=60\degree\)
(vi) \(x + 2x + 90° = 180°\)
\(3x = 180° - 90° = 90 º\)
\(x = \frac{90\degree}{3}=30\degree\)


Using laws of exponents, simplify and write the answer in exponential form:
(i) 32 × 34 × 38 (ii) 615 ÷ 610 (iii) a3 × a2 (iv) 7x×72 (v) (52) ÷ 53 (vi) 25 × 55 (vii) a4 × b4 (viii) (34)3(ix) (220 ÷ 215)×23 (x) 8t ÷ 82
