(i) 2x-7 = 2(-1)-7 = -2-7 = -9 [putting x=-1]
(ii) -x+2 = -(-1)+2 = 1+2 = 3[putting x=-1]
(iii) x2+2x+1 = (-1)2+2(-1)+1 = 1-2+1 = 2-2 = 0 [putting x=-1]
(iv) 2x2-x-2 = 2(-1)2-(-1)-2 = 2×1+1-2 = 2+1-2 = 3-2 = 1 [putting x=-1]
If \( x, y \) are two positive integers such that \( x + y = 20 \) and the maximum value of \( x^3 y \) is \( k \) at \( x = a, y = \beta \), then \( \frac{k}{\alpha^2 \beta^2} = ? \)