Find the value of the determinant \( \begin{vmatrix} a^2+1 & ab & ac \\ ab & b^2+1 & bc \\ ca & cb & c^2+1 \end{vmatrix} \).
Show Hint
For determinants with algebraic entries, always look for simplifications through row/column operations before attempting a direct expansion. The trick of multiplying rows by variables and then taking those variables common from columns is very effective.
Step 1: Understanding the Concept:
The problem requires evaluating a 3x3 determinant. Instead of direct expansion, which can be cumbersome, using determinant properties and row/column operations is a more efficient approach. Step 2: Key Formula or Approach:
The strategy is to simplify the determinant using the following properties:
1. Multiplying a row/column by a constant \(k\) multiplies the determinant's value by \(k\).
2. Taking a common factor from any one row or one column.
3. Applying operations like \(R_i \to R_i + R_j + R_k\) or \(C_i \to C_i - C_j\). Step 3: Detailed Explanation:
Let the given determinant be \(\Delta\).
\[
\Delta = \begin{vmatrix}
a^2+1 & ab & ac \\
ab & b^2+1 & bc \\
ca & cb & c^2+1
\end{vmatrix}
\]
Multiply Row 1 by \(a\), Row 2 by \(b\), and Row 3 by \(c\). To keep the value of the determinant unchanged, we must also divide by \(abc\).
\[
\Delta = \frac{1}{abc}
\begin{vmatrix}
a(a^2+1) & a^2b & a^2c \\
ab^2 & b(b^2+1) & b^2c \\
c^2a & c^2b & c(c^2+1)
\end{vmatrix}
\]
Now, take \(a\) common from Column 1, \(b\) from Column 2, and \(c\) from Column 3.
\[
\Delta = \frac{abc}{abc}
\begin{vmatrix}
a^2+1 & a^2 & a^2 \\
b^2 & b^2+1 & b^2 \\
c^2 & c^2 & c^2+1
\end{vmatrix}
\]
\[
\Delta =
\begin{vmatrix}
a^2+1 & a^2 & a^2 \\
b^2 & b^2+1 & b^2 \\
c^2 & c^2 & c^2+1
\end{vmatrix}
\]
Apply the row operation \(R_1 \to R_1 + R_2 + R_3\).
\[
\Delta =
\begin{vmatrix}
1+a^2+b^2+c^2 & 1+a^2+b^2+c^2 & 1+a^2+b^2+c^2 \\
b^2 & b^2+1 & b^2 \\
c^2 & c^2 & c^2+1
\end{vmatrix}
\]
Take the common factor \((1+a^2+b^2+c^2)\) from Row 1.
\[
\Delta = (1+a^2+b^2+c^2)
\begin{vmatrix}
1 & 1 & 1 \\
b^2 & b^2+1 & b^2 \\
c^2 & c^2 & c^2+1
\end{vmatrix}
\]
Now apply the column operations \(C_2 \to C_2 - C_1\) and \(C_3 \to C_3 - C_1\).
\[
\Delta = (1+a^2+b^2+c^2)
\begin{vmatrix}
1 & 0 & 0 \\
b^2 & 1 & 0 \\
c^2 & 0 & 1
\end{vmatrix}
\]
The determinant of a lower triangular matrix is the product of its diagonal elements.
\[
\Delta = (1+a^2+b^2+c^2) \cdot (1 \cdot 1 \cdot 1)
\]
\[
\Delta = 1+a^2+b^2+c^2
\]
Step 4: Final Answer:
The value of the determinant is \(\boxed{1 + a^2 + b^2 + c^2}\).