Let us first calculate the direction ratios of the given lines.
For the line \( \vec{r_1} \), the direction ratios are:
\[
\vec{d_1} = \langle 1, 2, 3 \rangle.
\]
For the line \( \vec{r_2} \), the direction ratios are:
\[
\vec{d_2} = \langle 1, -3, p\mu + 7 \rangle.
\]
Step 1: Condition for perpendicularity.
The two lines are perpendicular if the dot product of their direction ratios is zero:
\[
\vec{d_1} \cdot \vec{d_2} = 0.
\]
So:
\[
1 \cdot 1 + 2 \cdot (-3) + 3 \cdot (p + 7) = 0.
\]
Simplify:
\[
1 - 6 + 3(p + 7) = 0.
\]
Expand and solve for \( p \):
\[
1 - 6 + 3p + 21 = 0 \quad \Rightarrow \quad 3p + 16 = 0 \quad \Rightarrow \quad p = -\frac{16}{3}.
\]
Step 2: Condition for intersection.
For the lines to intersect, their position vectors must be equal:
\[
\vec{r_1} = \vec{r_2}.
\]
Equating components:
\[
1 = 1, \quad 2\lambda + 1 = -3, \quad 3\lambda + 2 = p\mu + 7.
\]
Solve the second equation:
\[
2\lambda + 1 = -3 \quad \Rightarrow \quad \lambda = -2.
\]
Substitute \( \lambda = -2 \) into the third equation:
\[
3(-2) + 2 = p\mu + 7 \quad \Rightarrow \quad -6 + 2 = p\mu + 7 \quad \Rightarrow \quad p\mu = -11.
\]
Step 3: Final result.
The value of \( p \) is:
\[
\boxed{-11}.
\]
The point of intersection can be determined using \( \lambda = -2 \) and the corresponding values of \( \mu \).