For \( f(x) \) to be continuous at \( x = 2 \), the left-hand limit (LHL), right-hand limit (RHL), and the value of \( f(2) \) must all be equal.
1. Left-hand limit (LHL): For \( x<2 \): \[ f(x) = \frac{x - 2}{|x - 2|} + a = -1 + a. \] As \( x \to 2^- \): \[ {LHL} = -1 + a. \]
2. Right-hand limit (RHL): For \( x > 2 \): \[ f(x) = \frac{x - 2}{|x - 2|} + b = 1 + b. \] As \( x \to 2^+ \): \[ {RHL} = 1 + b. \]
3. Value at \( x = 2 \): \[ f(2) = a + b. \]
4. Continuity condition: \[ {LHL} = {RHL} = f(2). \] Substitute: \[ -1 + a = 1 + b = a + b. \] From \( -1 + a = a + b \): \[ b = -1. \] From \( 1 + b = a + b \): \[ a = 1. \]
Final Answer: \( \boxed{a = 1, b = -1} \)
Show that \( R \) is an equivalence relation. Also, write the equivalence class \([2]\).
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |