Find the value of $1(1!)+2(2!)+3(3!)+\cdots+20(20!)$.
$21!$
Use the identity $n\cdot n!=(n+1)!-n!$. Then the sum telescopes: \[ \sum_{n=1}^{20} n\cdot n! = \sum_{n=1}^{20} \big((n+1)!-n!\big) = \underbrace{(2!-1!)}_{n=1}+\underbrace{(3!-2!)}_{n=2}+\cdots+\underbrace{(21!-20!)}_{n=20} =21!-1!. \] Hence the value is $21!-1$.
If \( x = \left( 2 + \sqrt{3} \right)^3 + \left( 2 - \sqrt{3} \right)^{-3} \) and \( x^3 - 3x + k = 0 \), then the value of \( k \) is:
Find the missing code:
L1#1O2~2, J2#2Q3~3, _______, F4#4U5~5, D5#5W6~6