Step 1: Understanding the Concept:
The two given lines are skew lines, meaning they are non-parallel and do not intersect.
The shortest distance between two skew lines is the length of the perpendicular line segment connecting them.
Step 2: Key Formula or Approach:
The shortest distance (d) between two skew lines \(\vec{r} = \vec{a_1} + \lambda\vec{b_1}\) and \(\vec{r} = \vec{a_2} + \mu\vec{b_2}\) is given by the formula:
\[ d = \left| \frac{(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})}{|\vec{b_1} \times \vec{b_2}|} \right| \]
Step 3: Detailed Explanation or Calculation:
From the given equations of the lines, we identify the vectors:
Line 1: \(\vec{a_1} = 2\hat{i} + \hat{j} - \hat{k}\), \(\vec{b_1} = 3\hat{i} - 5\hat{j} + 2\hat{k}\)
Line 2: \(\vec{a_2} = \hat{i} + \hat{j}\), \(\vec{b_2} = 2\hat{i} - \hat{j} + \hat{k}\)
First, calculate \((\vec{a_2} - \vec{a_1})\):
\[ \vec{a_2} - \vec{a_1} = (\hat{i} + \hat{j}) - (2\hat{i} + \hat{j} - \hat{k}) = -\hat{i} + 0\hat{j} + \hat{k} \]
Next, calculate the cross product \((\vec{b_1} \times \vec{b_2})\):
\[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
3 & -5 & 2
2 & -1 & 1 \end{vmatrix} \]
\[ = \hat{i}((-5)(1) - (2)(-1)) - \hat{j}((3)(1) - (2)(2)) + \hat{k}((3)(-1) - (-5)(2)) \]
\[ = \hat{i}(-5 + 2) - \hat{j}(3 - 4) + \hat{k}(-3 + 10) \]
\[ = -3\hat{i} + \hat{j} + 7\hat{k} \]
Now, calculate the magnitude of the cross product, \(|\vec{b_1} \times \vec{b_2}|\):
\[ |\vec{b_1} \times \vec{b_2}| = \sqrt{(-3)^2 + 1^2 + 7^2} = \sqrt{9 + 1 + 49} = \sqrt{59} \]
Next, calculate the dot product \((\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})\):
\[ (-\hat{i} + \hat{k}) \cdot (-3\hat{i} + \hat{j} + 7\hat{k}) = (-1)(-3) + (0)(1) + (1)(7) = 3 + 7 = 10 \]
Finally, substitute these values into the shortest distance formula:
\[ d = \left| \frac{10}{\sqrt{59}} \right| = \frac{10}{\sqrt{59}} \]
Step 4: Final Answer
The shortest distance between the two lines is \(\frac{10}{\sqrt{59}}\) units.