(a) State the following:
(i) Kohlrausch law of independent migration of ions
A solution of glucose (molar mass = 180 g mol\(^{-1}\)) in water has a boiling point of 100.20°C. Calculate the freezing point of the same solution. Molal constants for water \(K_f\) and \(K_b\) are 1.86 K kg mol\(^{-1}\) and 0.512 K kg mol\(^{-1}\) respectively.
Write the reactions involved when D-glucose is treated with the following reagents: (a) HCN (b) Br\(_2\) water
Identify A and B in each of the following reaction sequence:
(a) \[ CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B \]
(b) \[ C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} A \xrightarrow{C_6H_5NH_2} B \]
Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal? Justify your answer.
The Second-Order Derivative is the derivative of the first-order derivative of the stated (given) function. For instance, acceleration is the second-order derivative of the distance covered with regard to time and tells us the rate of change of velocity.
As well as the first-order derivative tells us about the slope of the tangent line to the graph of the given function, the second-order derivative explains the shape of the graph and its concavity.
The second-order derivative is shown using \(f’’(x)\text{ or }\frac{d^2y}{dx^2}\).