Step 1: Use the standard result.
For a cyclic group $\mathbb{Z}_n$, the number of automorphisms is:
\[
|\text{Aut}(\mathbb{Z}_n)| = \varphi(n),
\]
where $\varphi(n)$ is Euler’s totient function.
Step 2: Prime factorization of 30.
\[
30 = 2 \times 3 \times 5.
\]
Step 3: Apply Euler’s Totient Formula.
For
\[
n = p_1 p_2 p_3,
\]
\[
\varphi(n) = n \left(1 - \frac{1}{p_1}\right)
\left(1 - \frac{1}{p_2}\right)
\left(1 - \frac{1}{p_3}\right).
\]
Thus,
\[
\varphi(30)
=
30\left(1-\frac{1}{2}\right)
\left(1-\frac{1}{3}\right)
\left(1-\frac{1}{5}\right).
\]
\[
=
30 \times \frac{1}{2} \times \frac{2}{3} \times \frac{4}{5}.
\]
\[
=
15 \times \frac{2}{3} \times \frac{4}{5}.
\]
\[
=
10 \times \frac{4}{5}.
\]
\[
=
8.
\]
Final Answer:
\[
\boxed{8}.
\]