1. Position vector of \( C \):
The formula for the position vector of a point dividing a line segment externally in the ratio \( m:n \) is:
\[
\vec{r}_C = \frac{m\vec{r}_B - n\vec{r}_A}{m-n}.
\]
Here, \( \vec{r}_A = \hat{i} + 2\hat{j} - \hat{k} \), \( \vec{r}_B = -\hat{i} + \hat{j} + \hat{k} \), \( m = 4 \), and \( n = 1 \). Substitute:
\[
\vec{r}_C = \frac{4(-\hat{i} + \hat{j} + \hat{k}) - 1(\hat{i} + 2\hat{j} - \hat{k})}{4-1}.
\]
Simplify:
\[
\vec{r}_C = \frac{-4\hat{i} + 4\hat{j} + 4\hat{k} - \hat{i} - 2\hat{j} + \hat{k}}{3} = \frac{-5\hat{i} + 2\hat{j} + 5\hat{k}}{3}.
\]
Thus:
\[
\vec{r}_C = -\frac{5}{3} \hat{i} + \frac{2}{3} \hat{j} + \frac{5}{3} \hat{k}.
\]
2. Find \( |\overrightarrow{AB}| : |\overrightarrow{BC}| \):
First, calculate \( \overrightarrow{AB} = \vec{r}_B - \vec{r}_A \):
\[
\overrightarrow{AB} = (-\hat{i} + \hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} - \hat{k}) = -2\hat{i} - \hat{j} + 2\hat{k}.
\]
Magnitude:
\[
| \overrightarrow{AB} | = \sqrt{(-2)^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3.
\]
Now calculate \( \overrightarrow{BC} = \vec{r}_C - \vec{r}_B \):
\[
\overrightarrow{BC} = \left(-\frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{5}{3}\hat{k}\right) - (-\hat{i} + \hat{j} + \hat{k}).
\]
Simplify:
\[
\overrightarrow{BC} = \left(-\frac{5}{3} + 1\right)\hat{i} + \left(\frac{2}{3} - 1\right)\hat{j} + \left(\frac{5}{3} - 1\right)\hat{k} = \frac{-2}{3}\hat{i} - \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}.
\]
Magnitude:
\[
| \overrightarrow{BC} | = \sqrt{\left(-\frac{2}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(\frac{2}{3}\right)^2} = \sqrt{\frac{4}{9} + \frac{1}{9} + \frac{4}{9}} = \sqrt{\frac{9}{9}} = 1.
\]
Thus:
\[
|\overrightarrow{AB}| : |\overrightarrow{BC}| = 3:1.
\]
Final Answer:
\[
\vec{r}_C = -\frac{5}{3} \hat{i} + \frac{2}{3} \hat{j} + \frac{5}{3} \hat{k}, \quad |\overrightarrow{AB}| : |\overrightarrow{BC}| = 3:1.
\]