Find the maximum and minimum values of \(x+1 sin2x\) on \([0,2\pi]\).
Let\( f(x)=x+sin2x.\)
\(f'(x)=1+2cos2x\)
Now,\(f'(x)=0\)
⇒\(cos2x=\)\(-\frac{1}{2}=\)\(-cos\frac{\pi}{3}\)
\(=cos({\pi}-\frac{\pi}{3})\)\(=cos\frac{2\pi}{3}\)
\(2x= 2\pi\pm\frac{2\pi}{3}\) \(n∈Z\)
\(⇒\)\(x=n\pi\pm\frac{\pi}{3},n∈Z\)
\(⇒x=\frac{\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3} ∈[0,2\pi]\)
Then, we evaluate the value of f at critical points \(x=\frac{\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3} \) and at the end points of the interval \([0,2\pi]\).
\(f(\frac{\pi}{3})=\frac{\pi}{3}+sin\frac{2\pi}{3}=\frac{\pi}{3}+\frac{\sqrt{3}}{3}\)
\(f(\frac{2\pi}{3})=\frac{2\pi}{3}+sin\frac{4\pi}{3}=\frac{2\pi}{3}-\frac{\sqrt{3}}{3}\)
\(f(\frac{4\pi}{3})=\frac{4\pi}{3}+sin\frac{8\pi}{3}=\frac{4\pi}{3}+\frac{\sqrt{3}}{3}\)
\(f(\frac{5\pi}{3})=\frac{5\pi}{3}+sin\frac{10\pi}{3}=\frac{5\pi}{3}-\frac{\sqrt{3}}{3}\)
\(f(0)=0+sin0=0\)
\(f(2{\pi})=2\pi+sin 4\pi=2\pi+0=2\pi\)
Hence, we can conclude that the absolute maximum value of \(f(x)\) in the interval \([0, 2\pi]\) is \(2\pi\) occurring at \(x=2\pi\) and the absolute minimum value of \(f(x)\) in the interval \([0, 2\pi]\) is 0 occurring at \(x=0\)
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: