Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}1&2&3\\0&2&4\\0&0&5\end{bmatrix}\)
Let A=\(\begin{bmatrix}1&2&3\\0&2&4\\0&0&5\end{bmatrix}\)
We have, IAI=1(10-0)-2(0-0)+3(0-0)=10
A11=10-0=10, A12=-(0-0)=0,A13=0-0=0
A21=-(10-0)=-10, A22=5-0=5, A23=-(0-0)=0
A31=8-6=2 ,A32=-(4-0)=-4,A33=2-0=2
adj A=\(\begin{bmatrix}10&-10&2\\0&5&-4\\0&0&2\end{bmatrix}\)
so A-1=\(\frac{1}{\mid A \mid}\)adj A=\(\frac{1}{10}\begin{bmatrix}10&-10&2\\0&5&-4\\0&0&2\end{bmatrix}\)
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).