Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}1&2&3\\0&2&4\\0&0&5\end{bmatrix}\)
Let A=\(\begin{bmatrix}1&2&3\\0&2&4\\0&0&5\end{bmatrix}\)
We have, IAI=1(10-0)-2(0-0)+3(0-0)=10
A11=10-0=10, A12=-(0-0)=0,A13=0-0=0
A21=-(10-0)=-10, A22=5-0=5, A23=-(0-0)=0
A31=8-6=2 ,A32=-(4-0)=-4,A33=2-0=2
adj A=\(\begin{bmatrix}10&-10&2\\0&5&-4\\0&0&2\end{bmatrix}\)
so A-1=\(\frac{1}{\mid A \mid}\)adj A=\(\frac{1}{10}\begin{bmatrix}10&-10&2\\0&5&-4\\0&0&2\end{bmatrix}\)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to