Using Binomial Theorem, the given expression \((3x^2-2ax +3a^2)^3\) can be expanded as
\([(3x^2-2ax)+3a^2]^3\)
= \(^3C_0 (3x^2 -2ax)^3 + \space^3C_1(3x^2 - 2ax)^2 (3a^2) +\space ^3C_2 (3x^2 - 2ax) (3a^2)^2 + \space^3C_3 (3a^2)^2\)
\(=(3x^2-2ax)^3+3(9x^4-12ax^3 +4a^2x^2) (3a^2)+3(3x^2-2ax) (9a^4)+27a^6\)
\(=(3x^2-2ax)^3 +81a^2x^4-108a^3x^3 +36a^4x^2+81a^4x^2-54a^5x+27a^6\)
\(=(3x^2-2ax)^3 +81a^2x^4-108a^3x^3+117a^4x^2-54a^5x+27a^6 ...(1)\)
Again by using Binomial Theorem, we obtain
\((3x^2-2ax)^3\)
\(=\space^ 3C_0 (3x^2)^3 - \space^3C_1 (3x^2)^2 (2ax) + \space^3C_2 (3x^2) (2ax)^2 - 3C^3 (2ax)^3 \)
\(=27x^6-3(9x^4) (2ax)+3(3x^2) (4a^2x^2)-8a^3x^3\)
\(=27x^6-54ax^5 +36a^2x^4+-8a^3x^3 ...(2)\)
From (1) and (2), we obtain
\((3x^2-2ax +3a^2)^3\)
\(=27x^6-54ax^5 +36a^2x^4-8a^3x^3 +81a^2x^4-108a^3x^3 +117a^4x^2 - 54a^5x+27a^6\)
\(=27x^6-54ax^5+117a^2x^4+-116a^3x^3 +117a^4x^2 -54a^5 +27a^6\)
Find the mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.
The binomial expansion formula involves binomial coefficients which are of the form
(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.

This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:
We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn
General Term = Tr+1 = nCr xn-r . yr